1. The diagram shows a cube, OABCDEFG where the length of each edge is 5cm. Express the following vectors in terms of i, j and k.

- (a) \overrightarrow{OG} ;
- (b) \overrightarrow{BD} ;
- (c) \overrightarrow{EB} .

(Total 6 marks)

(Total 6 marks)

(Total 6 marks)

2. Consider the vectors $\boldsymbol{u} = 2\boldsymbol{i} + 3\boldsymbol{j} - \boldsymbol{k}$ and $\boldsymbol{v} = 4\boldsymbol{i} + \boldsymbol{j} - p\boldsymbol{k}$.

- (a) Given that u is perpendicular to v find the value of p.
- (b) Given that $q |\mathbf{u}| = 14$, find the value of q.
- **3.** The line *L* passes through the points A (3, 2, 1) and B (1, 5, 3).
 - (a) Find the vector AB.
 - (b) Write down a vector equation of the line *L* in the form $\mathbf{r} = \mathbf{a} + t\mathbf{b}$.
- 4. The line L_1 is represented by $\mathbf{r}_1 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the line L_2 by $\mathbf{r}_2 = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}$.

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

(Total 6 marks)

5. Two lines L_1 and L_2 have these vector equations.

$$L_1: r = 2i + 3j + t(i - 3j)$$

$$L_2: r = i + 2j + s(i - j)$$

The angle between L_1 and L_2 is θ . Find the cosine of the angle θ .

(Total 6 marks)

(3)

(4)

(3)

(2)

- 6. Consider the points A (1, 5, 4), B (3, 1, 2) and D (3, k, 2), with (AD) perpendicular to (AB).
 - (a) Find
 - (i) AB;
 - (ii) \overrightarrow{AD} , giving your answer in terms of k.
 - (b) Show that k = 7. (3)

The point C is such that $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AD}$.

- (c) Find the position vector of C.
- (d) Find $\cos ABC$.
 - (Total 13 marks)

7. In this question, distance is in metres, time is in minutes.

Two model airplanes are each flying in a straight line.

At 13:00 the first model airplane is at the point (3, 2, 7). Its position vector after *t* minutes is given by $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 7 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 10 \end{pmatrix}$.

(a) Find the speed of the model airplane.

At 13:00 the second model airplane is at the point (-5, 10, 23). After two minutes, it is at the point (3, 16, 39).

- (b) Show that its position vector after t minutes is given by $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -5 \\ 10 \\ 23 \end{pmatrix} + t \begin{pmatrix} 4 \\ 3 \\ 8 \end{pmatrix}$. (3)
- (c) The airplanes meet at point Q.
 - (i) At what time do the airplanes meet?
 - (ii) Find the position of Q.
- (d) Find the angle θ between the paths of the two airplanes.

(6) (Total 17 marks)

(6)

8. The diagram below shows a cuboid (rectangular solid) OJKLMNPQ. The vertex O is (0, 0, 0), J is (6, 0, 0), K is (6, 0, 10), M is (0, 7, 0) and Q is (0, 7, 10).

(ii) Find \overrightarrow{MK} .

(b) An equation for the line (MK) is
$$\mathbf{r} = \begin{pmatrix} 0 \\ 7 \\ 0 \end{pmatrix} + s \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix}$$
.

(i) Write down an equation for the line (JQ) in the form r = a + tb.

(ii) Find the acute angle between (JQ) and (MK).

(9)

(c) The lines (JQ) and (MK) intersect at D. Find the position vector of D.

(5) (Total 16 marks)

- 9. Points P and Q have position vectors -5i + 11j 8k and -4i + 9j 5k respectively, and both lie on a line L_1 .
 - (a) (i) Find \overrightarrow{PQ} .
 - (ii) Hence show that the equation of L_1 can be written as

$$\mathbf{r} = (-5+s)\,\mathbf{i} + (11-2s)\,\mathbf{j} + (-8+3s)\,\mathbf{k}.$$
(4)

The point R $(2, y_1, z_1)$ also lies on L_1 .

(b) Find the value of y_1 and of z_1 .

(4)

The line L_2 has equation $\mathbf{r} = 2\mathbf{i} + 9\mathbf{j} + 13\mathbf{k} + t(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$.

- (c) The lines L_1 and L_2 intersect at a point T. Find the position vector of T. (7)
- (d) Calculate the angle between the lines L_1 and L_2 .

(7) (Total 22 marks)